THCP + THCA + D8 Strawberry Slush

Sample ID: 2402EXL0450.2116

Strain: Strawberry Slush

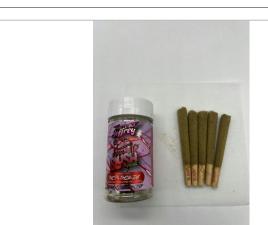
Matrix: Plant

Type: Enhanced/Infused Preroll Sample Size: ; Batch:

Produced:

Collected: 02/27/2024

Received: 02/28/2024


Completed: 03/05/2024 Batch#:

Client

Hemp Supply Prime

Lic.#

1920 E Warner Ave Santa Ana, CA 92705

Summary

Test **Date Tested** Result Batch Complete Cannabinoids 03/05/2024 Complete Moisture 03/05/2024 14.6% - Complete

Cannabinoids Complete

30.469%

Total THC

5.761%

Total CBD

38.394%

Total Cannabinoids

	_			
LOD	LOQ	Result	Result	
mg/g	mg/g	%	mg/g	
0.125	0.250	ND	ND	
0.125	0.250	4.4629	44.629	
0.125	0.250	1.4801	14.801	
0.125	1.000	ND	ND	
0.257	0.780	ND	ND	
0.125	0.500	1.4208	14.208	
0.125	0.250	0.4917	4.917	
0.125	0.250	ND	ND	
0.125	0.500	15.8300	158.300	
0.125	0.500	0.2477	2.477	
	0.500	16.4092	164.092	
	mg/g 0.125 0.125 0.125 0.125 0.257 0.125 0.125 0.125	mg/g 0.125 0.250 0.125 0.250 0.125 0.250 0.125 0.250 0.125 0.250 0.125 0.780 0.125 0.500 0.125 0.125 0.250 0.125 0.125 0.250 0.125 0.250 0.125 0.500 0.125 0.500 0.125 0.500 0.125 0.500 0.125 0.500 0.125 0.500	mg/g mg/g % 0.125 0.250 ND 0.125 0.250 4.4629 0.125 0.250 1.4801 0.125 1.000 ND 0.257 0.780 ND 0.125 0.500 1.4208 0.125 0.250 0.4917 0.125 0.250 ND 0.125 0.500 15.8300 0.125 0.500 0.2477 0.250 0.500 16.4092	mg/g mg/g % mg/g 0.125 0.250 ND ND 0.125 0.250 4.4629 44.629 0.125 0.250 1.4801 14.801 0.125 1.000 ND ND 0.257 0.780 ND ND 0.125 0.500 1.4208 14.208 0.125 0.250 0.4917 4.917 0.125 0.250 ND ND 0.125 0.500 15.8300 158.300 0.125 0.500 0.2477 2.477 0.250 0.500 16.4092 164.092 0.250 0.500 ND ND 30.469 304.685 5.761 57.609 1.852 18.520

Date Tested: 03/05/2024

Total THC = THCa * 0.877 + Δ9-THC; Total CBD = CBDa * 0.877 + CBD; Total CBG = CBGa * 0.877 + CBG. Total Cannabinoids = Total THC + Total CBD + Total CBG + minor cannabinoids.

Cannabinoids: HPLC, CAN-SOP-001

Water Activity: Water Activity Meter, WA-SOP-001

Moisture Content: Moisture Analyzer, MO-SOP-001

Foreign Matter: Visual Inspection, FM-SOP-001

Jerry White, PhD

Analyst 03/05/2024

Confident LIMS All Rights Reserved coa. support@confident lims.com(866) 506-5866 www.confidentlims.com

ND = Not Detected, NR = Not Reported, LOD = Limit of Detection, LOQ = Limit of Quantitation. This product has been tested by Excelbis Labs LLC using valid testing methodologies and a quality system as required by state law. All LQC samples were performed and met the prescribed acceptance criteria in 16 CCR section 5730, pursuant to 16 CCR section 5726(e)(13). Values reported relate only to the product tested. Excelbis Labs LLC makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Excelbis Labs LLC.

Chief Scientific Officer 03/05/2024

THCP + THCA + D8 Strawberry Slush

Sample ID: 2402EXL0450.2116

Strain: Strawberry Slush

Matrix: Plant

Type: Enhanced/Infused Preroll Sample Size: ; Batch:

Produced:

Collected: 02/27/2024

Received: 02/28/2024

Completed: 03/05/2024 Batch#:

Client

Hemp Supply Prime

Lic.#

1920 E Warner Ave Santa Ana, CA 92705

Cannabinoids Complete

Analyte	LOD	LOQ	Mass	Mass
•	mg/g	mg/g	%	mg/g
THCp	0.257	0.780	0.3123	3.123
Total			0.3123	3.123

Total THC = THCa * 0.877 + Δ9-THC: Total CBD = CBDa * 0.877 + CBD: Total CBG = CBGa * 0.877 + CBG. Total Cannabinoids = Total THC + Total CBD + Total CBG + minor cannabinoids.

Cannabinoids: HPLC, CAN-SOP-001

Water Activity: Water Activity Meter, WA-SOP-001 Moisture Content: Moisture Analyzer, MO-SOP-001 Foreign Matter: Visual Inspection, FM-SOP-001

Analyst 03/05/2024

Confident LIMS All Rights Reserved coa. support@confident lims.com(866) 506-5866 www.confidentlims.com

ND = Not Detected, NR = Not Reported, LOD = Limit of Detection, LOQ = Limit of Quantitation. This product has been tested by Excelbis Labs LLC using valid testing methodologies and a quality system as required by state law. All LQC samples were performed and met the prescribed acceptance criteria in 16 CCR section 5730, pursuant to 16 CCR section 5726(e)(13). Values reported relate only to the product tested. Excelbis Labs LLC makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Excelbis Labs LLC.

Chief Scientific Officer 03/05/2024

THCP + THCA + D8 Blue Cotton Candy

Sample ID: 2402EXL0450.2117

Strain: Blue Cotton Candy

Matrix: Plant

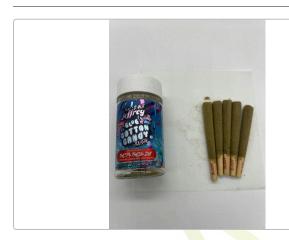
Type: Enhanced/Infused Preroll Sample Size: ; Batch:

Produced:

Collected: 02/27/2024

Received: 02/28/2024

Completed: 03/05/2024 Batch#:


Client

Hemp Supply Prime

Lic.#

1920 E Warner Ave

Santa Ana, CA 92705

Summary

Test **Date Tested** Result Batch Complete 03/05/2024 Cannabinoids

Complete Moisture 03/05/2024 13.7% - Complete

Cannabinoids Complete

31.021%

Total THC

5.620%

Total CBD

38.805%

Total Cannabinoids

Analyte	LOD	LOQ	Result	Result	
	mg/g	mg/g	%	mg/g	
CBC	0.125	0.250	ND	ND	
CBD	0.125	0.250	4.4164	44.164	
CBDa	0.125	0.250	1.3722	13.722	
CBDV	0.125	1.000	ND	ND	
CBDVa	0.257	0.780	ND	ND	
CBG	0.125	0.500	1.4995	14.995	
CBGa	0.125	0.250	0.4173	4.173	
CBN	0.125	0.250	ND	ND	
∆8-THC	0.125	0.500	16.1746	161.746	
∆9-THC	0.125	0.500	0.2649	2.649	
ГНСа	0.250	0.500	16.6265	166.265	
THCV	0.250	0.500	ND	ND	
Total THC			31.021	310.209	
Total CBD			5.620	56.198	
Total CBG			1.865	18.654	
Total			38.805	388.049	

Date Tested: 03/05/2024

Total THC = THCa * 0.877 + Δ9-THC; Total CBD = CBDa * 0.877 + CBD; Total CBG = CBGa * 0.877 + CBG. Total Cannabinoids = Total THC + Total CBD + Total CBG + minor cannabinoids.

Cannabinoids: HPLC, CAN-SOP-001

Water Activity: Water Activity Meter, WA-SOP-001

Moisture Content: Moisture Analyzer, MO-SOP-001

Foreign Matter: Visual Inspection, FM-SOP-001

Jerry White, PhD

Analyst 03/05/2024

Confident LIMS All Rights Reserved coa.support@confidentlims.com (866) 506-5866 www.confidentlims.com

ND = Not Detected, NR = Not Reported, LOD = Limit of Detection, LOQ = Limit of Quantitation. This product has been tested by Excelbis Labs LLC using valid testing methodologies and a quality system as required by state law. All LQC samples were performed and met the prescribed acceptance criteria in 16 CCR section 5730, pursuant to 16 CCR section 5726(e)(13). Values reported relate only to the product tested. Excelbis Labs LLC makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Excelbis Labs LLC.

Chief Scientific Officer 03/05/2024

THCP + THCA + D8 Blue Cotton Candy

Sample ID: 2402EXL0450.2117

Strain: Blue Cotton Candy

Matrix: Plant

Type: Enhanced/Infused Preroll Sample Size: ; Batch:

Produced:

Collected: 02/27/2024

Received: 02/28/2024

Completed: 03/05/2024 Batch#:

Client

Hemp Supply Prime

Lic.#

1920 E Warner Ave

Santa Ana, CA 92705

Cannabinoids Complete

Analyte	LOD	LOQ	Mass	Mass
	mg/g	mg/g	%	mg/g
HHC	0.257	0.780	ND	ND
THCp	0.257	0.780	0.2988	2.988
Total			0.2988	2.988

Total THC = THCa * 0.877 + Δ9-THC: Total CBD = CBDa * 0.877 + CBD: Total CBG = CBGa * 0.877 + CBG. Total Cannabinoids = Total THC + Total CBD + Total CBG + minor cannabinoids.

Cannabinoids: HPLC, CAN-SOP-001

Water Activity: Water Activity Meter, WA-SOP-001 Moisture Content: Moisture Analyzer, MO-SOP-001 Foreign Matter: Visual Inspection, FM-SOP-001

Chief Scientific Officer 03/05/2024

Analyst 03/05/2024

Confident LIMS All Rights Reserved coa. support@confident lims.com(866) 506-5866 www.confidentlims.com

ND = Not Detected, NR = Not Reported, LOD = Limit of Detection, LOQ = Limit of Quantitation. This product has been tested by Excelbis Labs LLC using valid testing methodologies and a quality system as required by state law. All LQC samples were performed and met the prescribed acceptance criteria in 16 CCR section 5730, pursuant to 16 CCR section 5726(e)(13). Values reported relate only to the product tested. Excelbis Labs LLC makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Excelbis Labs LLC.

SDPharm**Labs**

PharmLabs San Diego Certificate of Analysis

3421 Hancock St, Second Floor, San Diego, CA 92110 | License: C8-0000098-LIC ISO/IEC 17025:2017 Accredited L17-427-1 #85368

Sample THCA:D8:THCP Preroll 20230720-PR

Laboratory note: The estimated concentration of the unknown peak in the sample is 2.14% | Currently PharmLabs laboratory can not confirm an unidentified peak in your chromatogram due to interference (only with highly concentrated D8 products) from which we believe to be either (+)d8-THC or 49-THC. At this time there are no reference standards available for (+)d8-THC is o different compound from the main (-)d8-THC cannobinoid and, therefore, these two compounds may have different efficacies. Using the most advanced instruments and techniques available, the separation of (+)d8-THC and d9-THC is problematic for the scientific community as a whole. PharmLabs believes the unidentified peak to be a combination of (+)d8-THC with the majority, if not all, of the concentration being (+)d8-THC. Total (+/-) D8 Concentration is estimated to be 15.47%.

CANX - Cannabinoids Analysis

Analyzed Aug 16, 2023 | Instrument HPLC-VWD | Method The expanded Uncertainty of the Cannabinoid analysis is approximately £.81% at the 95% Confidence Level

The expanded officer taining of the cannabilloid analysis is approximately 2.01% at the	7570 COII	nacrice	LCVCI	
Analyte	LOD mg/g	LOQ mg/g	Result %	Result mg/g
11-Hydroxy-Δ8-Tetrahydrocannabivarin (11-Hyd-Δ8-THCV)	0.013	0.041	ND	ND
Cannabidiorcin (CBDO)	0.002	0.007	ND	ND
Abnormal Cannabidiorcin (a-CBDO)	0.01	0.031	ND	ND
(+/-)-9B-hydroxy-Hexahydrocannibinol (9b-HHC)	0.012	0.036	ND	ND
11-Hydroxy-Δ8-Tetrahydrocannabinol (11-Hyd-Δ8-THC)	0.007	0.021	ND	ND
Cannabidiolic Acid (CBDA)	0.001	0.16	0.04	0.43
Cannabigerol Acid (CBGA)	0.001	0.16	1.15	11.51
Cannabigerol (CBG)	0.001	0.16	0.06	0.62
Cannabidiol (CBD)	0.001	0.16	ND	ND
1(S)-THD (s-THD)	0.013	0.041	ND	ND
1(R)-THD (r-THD)	0.025	0.075	ND	ND
Tetrahydrocannabivarin (THCV)	0.001	0.16	ND	ND
Δ8-tetrahydrocannabivarin (Δ8-THCV)	0.021	0.064	ND	ND
Cannabidihexol (CBDH)	0.005	0.16	ND	ND
Tetrahydrocannabutol (Δ9-THCB)	0.013	0.038	ND	ND
Cannabinol (CBN)	0.001	0.16	ND	ND
Cannabidiphorol (CBDP)	0.015	0.047	ND	ND
exo-THC (exo-THC)	0.005	0.16	ND	ND
Tetrahydrocannabinol (Δ9-THC)	0.003	0.16	UI	UI
Δ8-tetrahydrocannabinol (Δ8-THC)	0.004	0.16	15.47	154.70
(6aR,9S)-Δ10-Tetrahydrocannabinol ((6aR,9S)-Δ10)	0.015	0.16	ND	ND
Hexahydrocannabinol (S Isomer) (9s-HHC)	0.017	0.16	0.82	8.18
(6aR,9R)-Δ10-Tetrahydrocannabinol ((6aR,9R)-Δ10)	0.007	0.16	ND	ND
Hexahydrocannabinol (R Isomer) (9r-HHC)	0.016	0.16	1.78	17.85
Tetrahydrocannabinolic Acid (THCA)	0.001	0.16	20.99	209.90
Δ9-Tetrahydrocannabihexol (Δ9-THCH)	0.024	0.071	ND	ND
Cannabinol Acetate (CBNO)	0.014	0.043	ND	ND
Δ9-Tetrahydrocannabiphorol (Δ9-THCP)	0.017	0.16	0.19	1.94
Δ8-Tetrahydrocannabiphorol (Δ8-THCP)	0.041	0.16	ND	ND
Cannabicitran (CBT)	0.005	0.16	ND	ND
Δ8-THC-O-acetate (Δ8-THCO)	0.076	0.16	ND	ND
9(S)-HHCP (s-HHCP)	0.031	0.094	ND	ND
Δ9-THC-O-acetate (Δ9-THCO)	0.066	0.16	ND	ND
9(R)-HHCP (r-HHCP)	0.026	0.079	ND	ND
9(S)-HHC-O-acetate (s-HHCO)	0.005	0.16	ND	ND
9(R)-HHC-O-acetate (r-HHCO)	0.008	0.025	ND	ND
3-octyl-Δ8-Tetrahydrocannabinol (Δ8-THC-C8)	0.067	0.204	ND	ND
Δ9-THC methyl ether (Δ9-MeO-THC)			NT	NT
Total THC (THCa * 0.877 + Δ 9THC)			18.41	184.08
Total THC + Δ8THC + Δ10THC (THCa * 0.877 + Δ9THC + Δ8THC + Δ10THC)			33.88	338.78
Total CBD (CBDa * 0.877 + CBD)			0.04	0.38
Total CBG (CBGa * 0.877 + CBG)			1.07	10.71
Total HHC (9r-HHC + 9s-HHC)			2.60	26.03
Total Cannabinoids			37.78	377.84

*Dru Weiaht %

MWA - Moisture Content & Water Activity Analysis Analyzed Aug 16, 2023 | Instrument Chilled-mirror Dewpoint and Capacitance | Method SOP-008

Analyte	Result	Limit	Analyte	Result	Limit
Moisture (Moi)	9.3 % Mw	13 % Mw	Water Activity (WA)	0.63 a _w	0.85 a _w

UI Unidentified
ND Not Detected
N/A Not Applicable
NT Not Reported
LOD Limit of Detection
LOQ Limit of Quantification
-(LOQ Detected VIU.QL Above upper limit of linearity
CEVI/Q Colony Forming Units per 1 gram
TNTC Too Numerous to Count

Authorized Signature

Brandon Starr

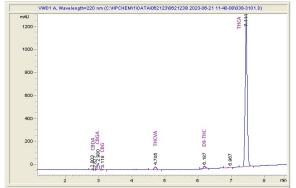
Brandon Starr, Lab Manager Wed, 16 Aug 2023 10:58:23 -0700

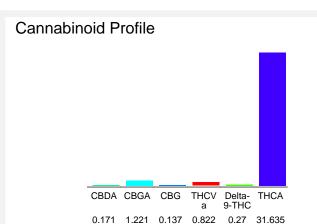
Simple Inc.

Sample 627-062123-004

THCA Infused Preroll 2

Batch/Lot # 20230616-2


Sample Submitted: 06-21-2023; Report Date: 06-26-2023


THCA Infused Preroll 2

Batch/Lot # 20230616-2

Plant Material

Chromatogram

Cannabinoid Profile by HPLC

0.27%

Delta-9-THC

0.00%

34.26%

Total Cannabinoids

Cannabinoid	% wt	mg/g
CBDA	0.171	1.71
CBGA	1.221	12.21
CBG	0.137	1.37
THCVa	0.822	8.22
Delta-9-THC	0.27	2.7
THCA	31.64	316.35
Total Cannabinoids	34.26	342.6
Calculated Total THC	28.01	280.14
Calculated CBD Yield	0.15	1.50
0 1 1 1 1 7 1 7 10 0 0 11 0 7 10		

Calculated Total THC = Delta-9-THC + 0.877 * THCA Calculated Maximum CBD Yield = CBD + 0.877 * CBDA

Marin Analytics, LLC 250 Bel Marin Keys Blvd, Suite D4 Novato, CA 94949

833-321-TEST / info@marinanalytics.com

Sara Biancalana
Chief Scientist

This sample has been tested by Marin Analytics, LLC using valid testing methodologies and a quality system. Values reported relate only to the sample tested. Marin Analytics, LLC makes no claims as to the efficacy, safety, or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full without the written approval of Marin Analytics, LLC. Copyright 2023 Marin Analytics, LLC All Rights Reserved.